Topological Order via Matrix Product Operators

Burak Sahinoglu

University of Vienna

D. Williamson (Vienna), N. Bultinck, M. Marien, J. Haegeman (Ghent), N. Schuch (Aachen), F. Verstraete (Vienna-Ghent)

merged with

Matrix Product Operators: Local Equivalence and Topological Order

Oliver Buerschaeper

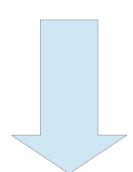
Perimeter Institute – FU Berlin

This talk is **NOT**

- A condensed matter talk
 - no approximations
 - no correlation functions, etc.

- A quantum information theory talk
 - no channel (capacity)
 - no asymptotic (or one-shot) quantitiy

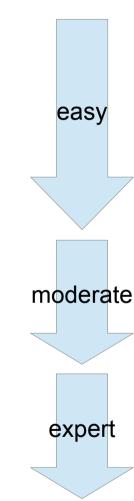
This talk is about special states with certain type of entanglement



- Ground state spaces
 - of many-body lattice models
 - which are long-range entangled
 - and topology dependent

OUTLINE

- Motivations
 - Quantum Error Correcting Codes
 - Material vs. Order
- A natural tool: Tensor Network States (TNS)
 - Topological order in TNS
 - Examples: Twisted Quantum Doubles
 String-net condensed states



Future

Quantum Error Correcting Codes

Kitaev:

- Encode the logical qubits in topological data so that local noise cannot change the logical qubit.
- Any nontrivial operation inside of the codespace must be topologically nontrivial local noise leads to an error with infinitesimal probability.

- Example: Toric Code
 - 2 qubits on torus (g qubits on g-genus surface)
 - Wilson loops as operations on codespace.

Material vs. Order

Whole from elementary:

Electrons, protons, etc...

How diversity emerges from elementary parts?

Order Diversity

Phases of Quantum Matter

Classical systems: Frozen at T=0.

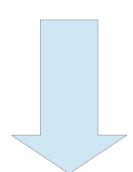
Quantum systems with local order parameter

 Quantum systems with nonlocal order parameter

Topology dependent ground states

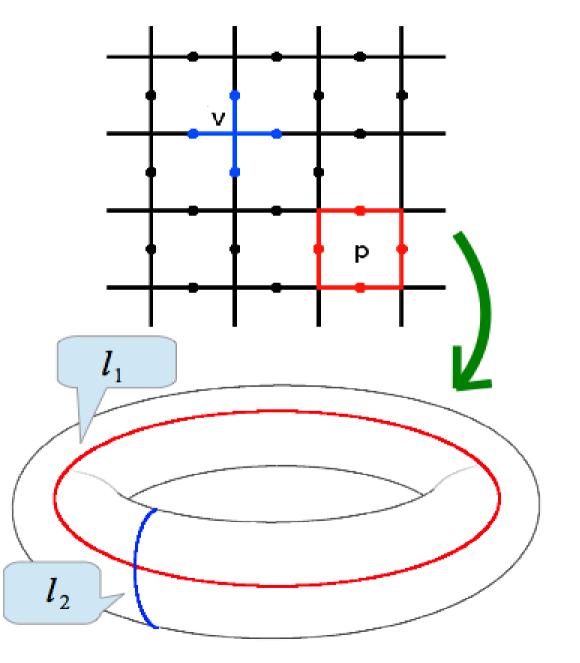
Local indistinguishability

This talk is about special states with certain type of entanglement



- Ground state spaces
 - of many-body lattice models
 - which are long-range entangled
 - and topology dependent

Example: Toric Code



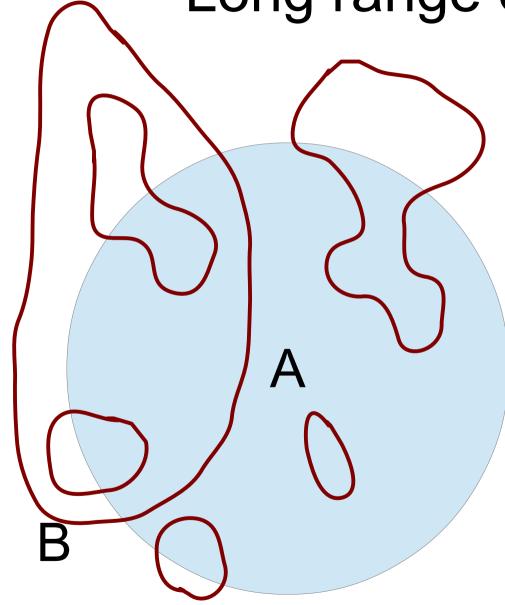
$$A_v = \Pi_{i \in v} X_i$$
, $B_p = \Pi_{i \in p} Z_i$
 $H = -\Sigma_v A_v - \Sigma_p B_p$

Ground state space:

$$\begin{aligned} |\psi_{1}\rangle &= \Sigma |even - l_{1} \wedge even - l_{2}\rangle \\ |\psi_{2}\rangle &= \Sigma |even - l_{1} \wedge odd - l_{2}\rangle \\ |\psi_{3}\rangle &= \Sigma |odd - l_{1} \wedge even - l_{2}\rangle \\ |\psi_{4}\rangle &= \Sigma |odd - l_{1} \wedge odd - l_{2}\rangle \end{aligned}$$

Locally Indistinguishable!

Long range entanglement



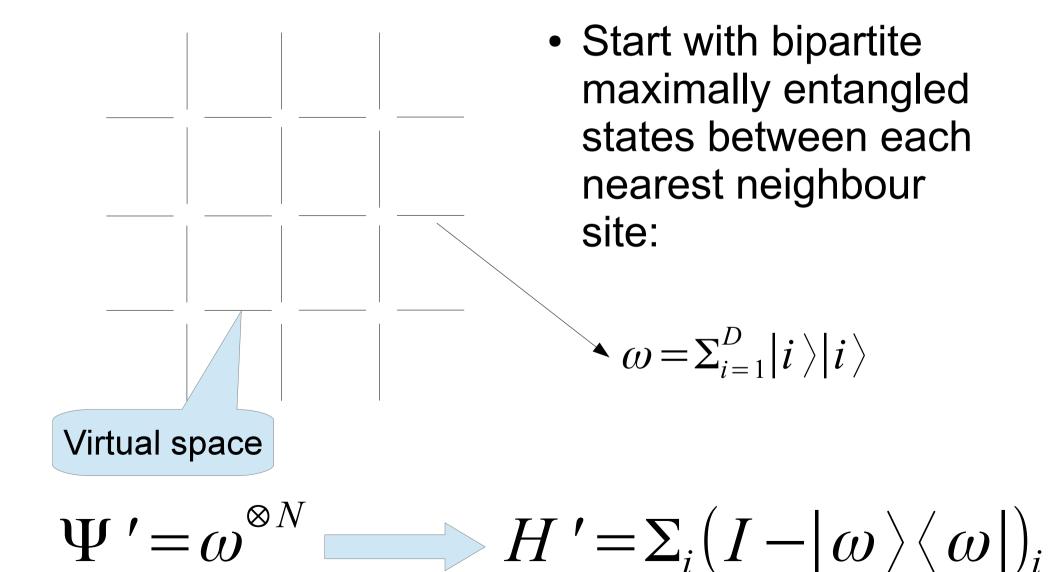
 #1s passing through the boundary= Even

 Correction to area law:

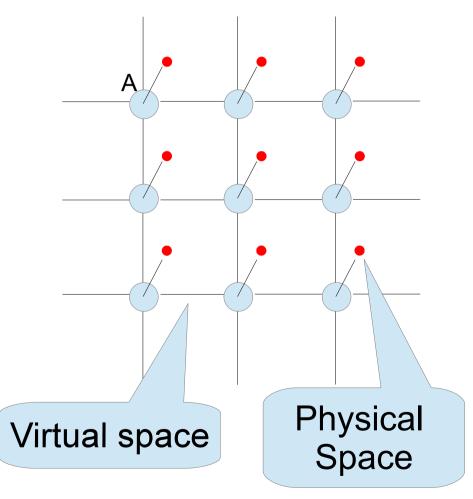
$$S(A) = L(A) - \gamma$$

Topological Entanglement Entropy

A natural tool: Tensor network states



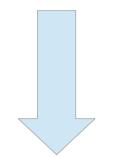
A natural tool: Tensor network states



Insert a linear map at every site:

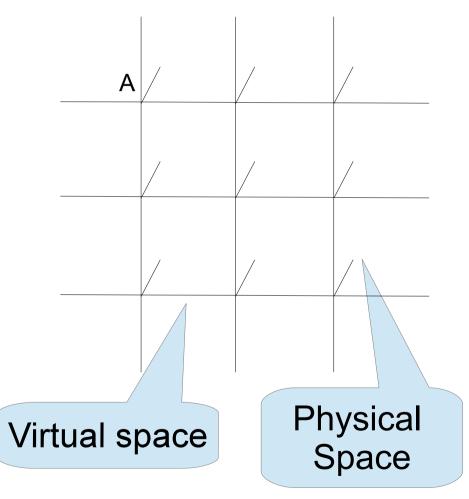
 $A: Virtual \rightarrow Physical$

$$\Psi = A^{\otimes N} \omega^{\otimes N}$$



$$H = A^{\otimes N} H' (A^{-1})^{\otimes N}$$

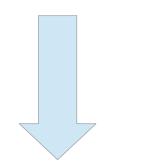
A natural tool: Tensor network states



Insert a linear map at every site:

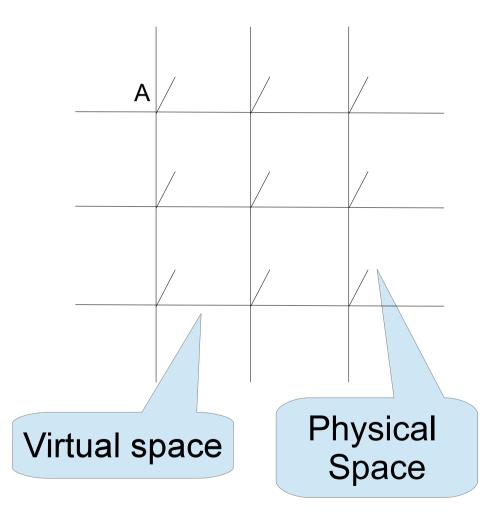
 $A: Virtual \rightarrow Physical$

$$\Psi = A^{\otimes N} \omega^{\otimes N}$$



$$H = A^{\otimes N} H' (A^{-1})^{\otimes N}$$

Pedagocigal Summary of TNS



- There are virtual and physical Hilbert spaces
- The structure of the whole state is encoded in

A (local tensor)

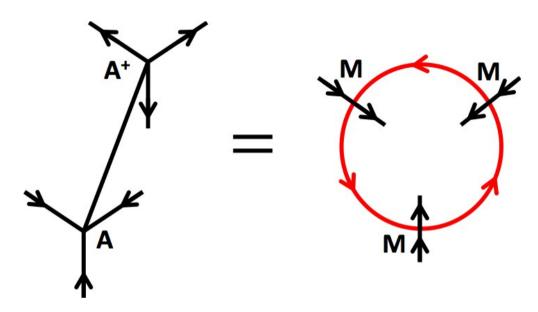
- Local tensor → State
 State → Local Hamiltonian
- Numerous other properties about entanglement entropy, efficient simulation of quantum systems, etc..

Topological order in TNS

Aims:

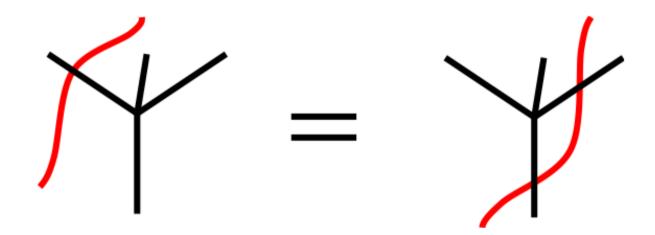
- Define properties of local tensor such that topological order emerges in TNS.
- Explain nonRG-fixed point topologically ordered models.
- Find new models.
- New concepts:
 - Express local virtual subspaces in terms of Matrix Product Operators (MPO-injectivity)
 - Symmetries of local tensor (Pulling through)

Defining the local subspace: MPO injectivity



 The virtual degrees of freedom are accessible in a subspace determined by a closed loop of MPOs.

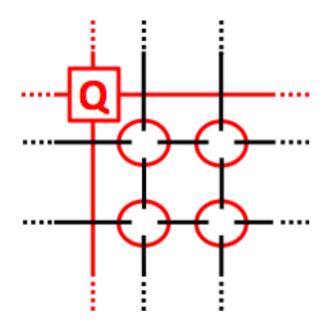
The symmetry on the virtual level: Pulling through



 Except end points, MPOs are free to move on the lattice: No change in the state!

(Analogue of deforming Wilson lines)

Ground states



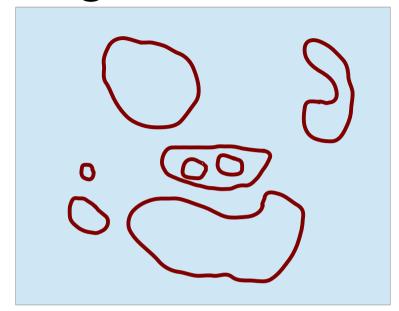
- Ground states are determined by tensor Q!
- The place of Q is irrelevant
 - Find linearly independent states.

Examples

Twisted Quantum Doubles

String-net states

Twisting the Toric Code



Toric code ground state

$$\Psi_{+}=\Sigma|loops\rangle$$

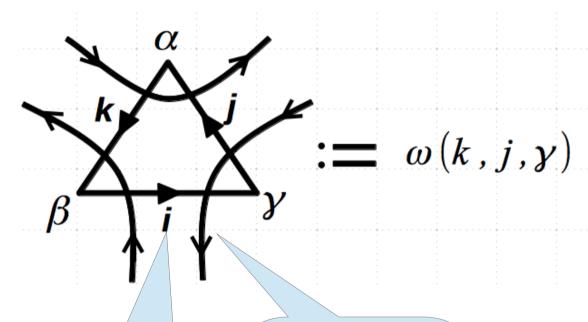
Doubled Semion ground state

$$\Psi_{-}=\Sigma(-1)^{\# loops}|loops\rangle$$

Twisted Quantum Doubles

 $\omega: G \times G \times G \rightarrow U(1)$

Special phases depending on the group element

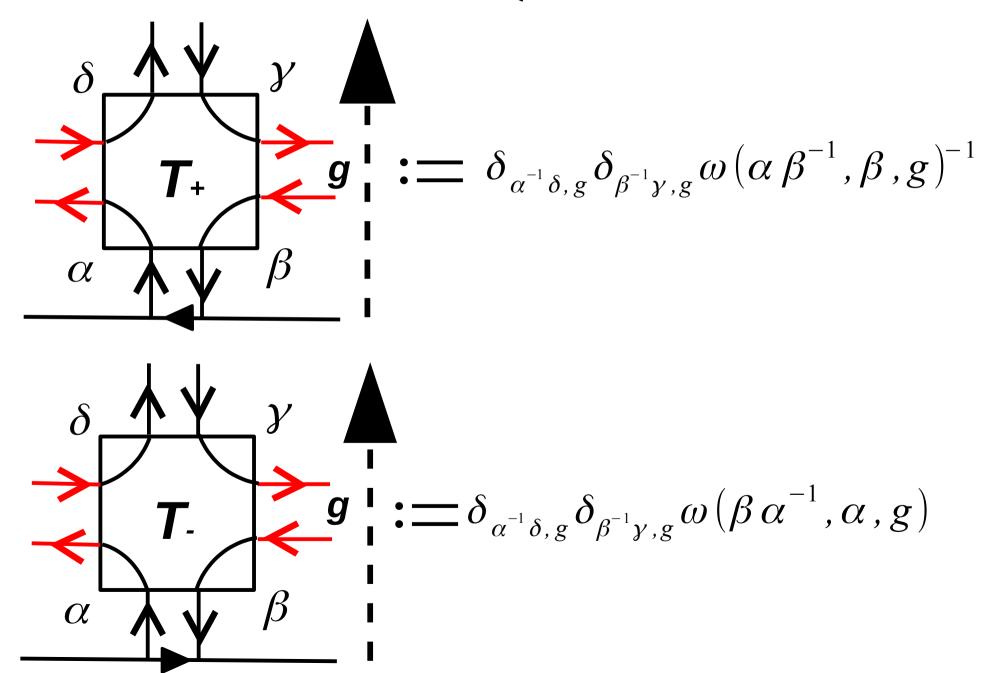


Physical indices are uniquely determined from virtual indices, via group operation!

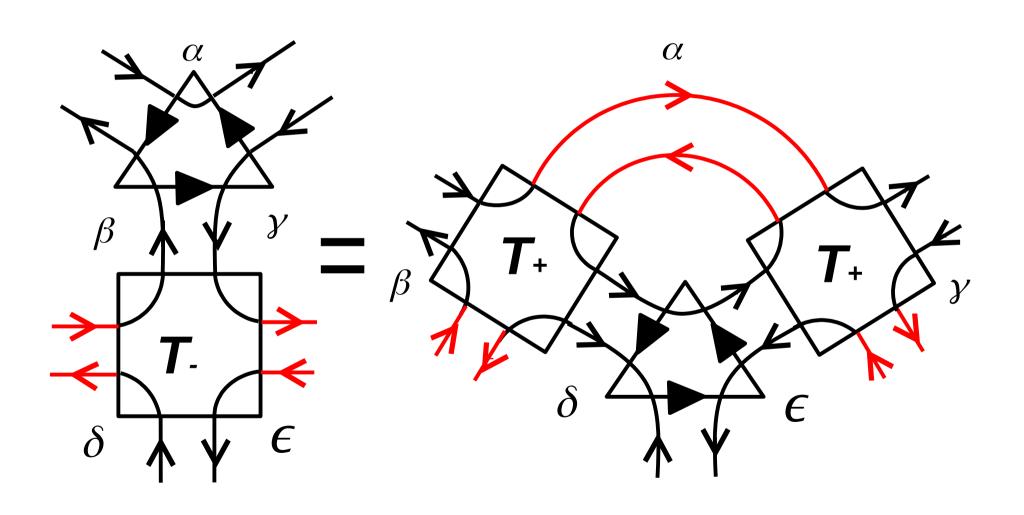
Physical Index

Virtual index

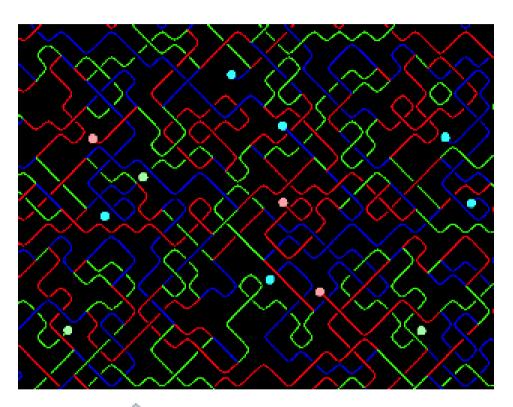
MPOs for Twisted Quantum Doubles



Pulling through for Twisted Q. Doubles



Levin-Wen Models: String-nets

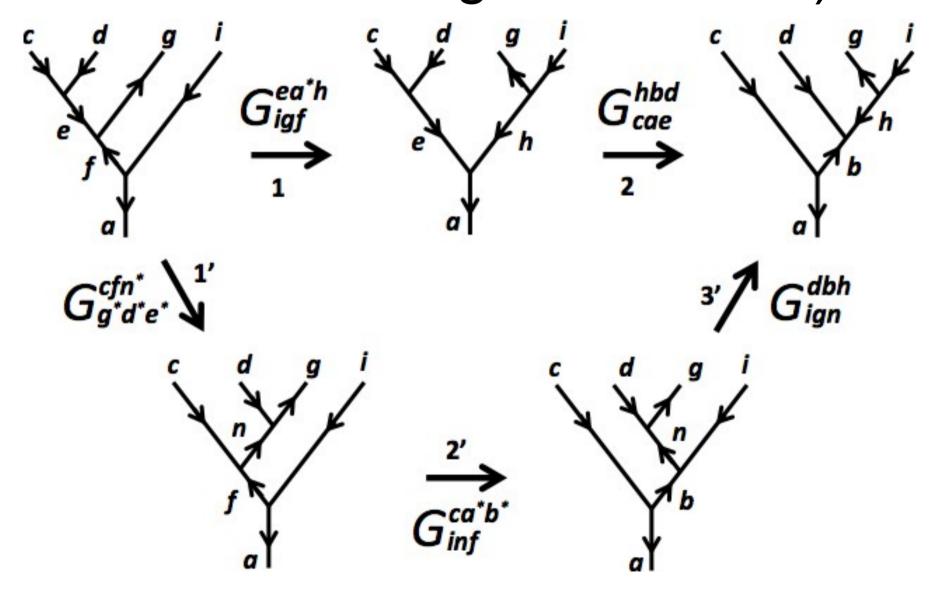


- Moving strings is free!
- Trivial loops are free
- Additional local rule:

 $G_{lmn}^{ijk}: \bigcap_{i}^{m} \bigcap_{j}^{k}$ G-symbol

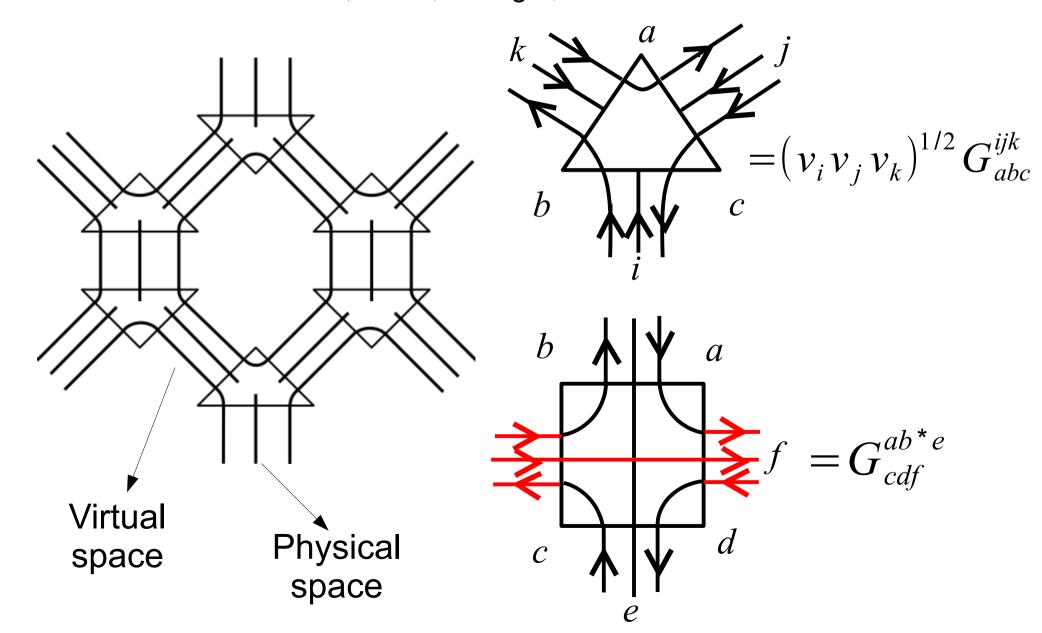
Superposition of strings on the lattice

Pentagon equation (coherence condition for ground states)

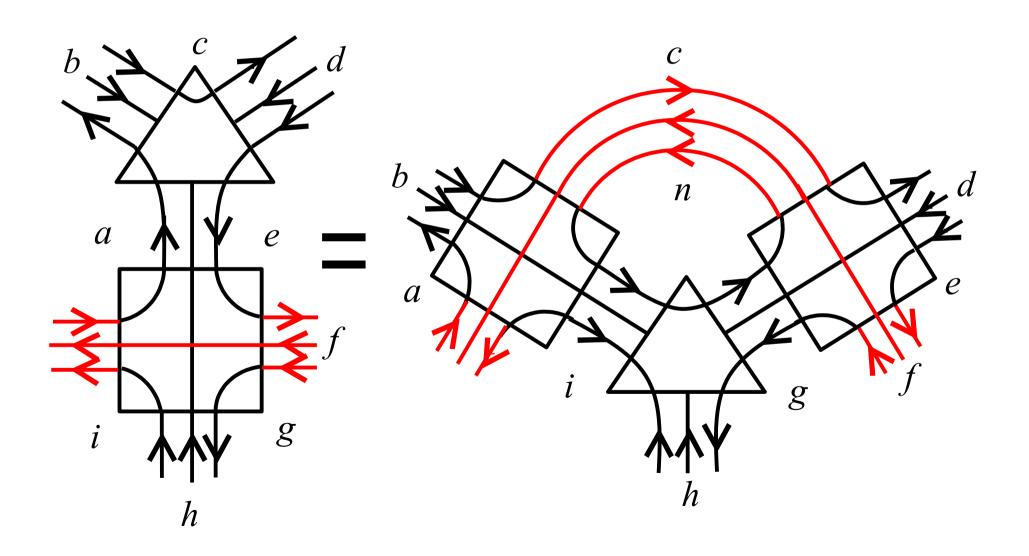


A TNS picture of String-Nets

Buerschaper, Aguado, Vidal - 2008 Gu, Levin, Swingle, Wen - 2008



Pulling through for String-nets



Classification of MPOs

 $M \sim M'$ if

- Trivial: product of diagonals
 - e.g.: $\omega' = \omega(\phi\phi)/(\phi\phi)$ group cohomology
- Product of unitaries
 - e.g.: group aut. group coh. collapses
- MPOs...

Morita equivalence

Summary

Quantum error correcting codes

Phases of matter

- Tensor networks states as a natural tool for studying ground states of physical systems
- Axioms for topological order (non RG-fixed point):
 - MPO-injectivity
 - Pulling through
- Layers of local equivalence

Future

- Classification:
 - Excitations
 - Topological phase transitions
- New models:
 - in 2D
 - Axioms generalize to higher dim.
 - Haah's code etc. (?)

 Easy to give string tension and study
 anyon condensation:

arXiv:1410.5443

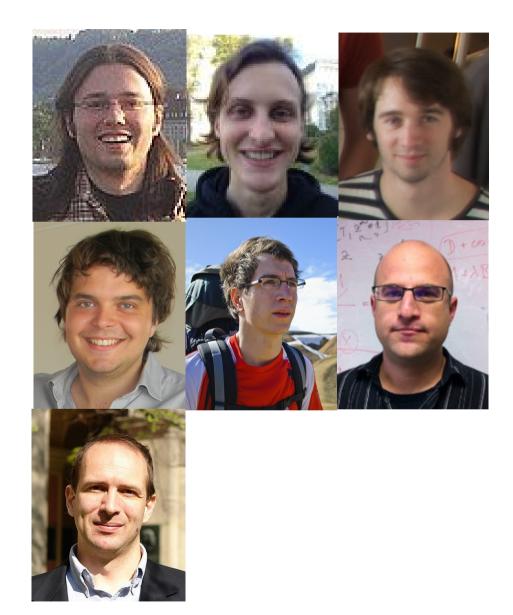
- Duality in PEPS:

SPT – Topological phase duality:

arXiv:1412.5604

For Details

- arXiv: to appear



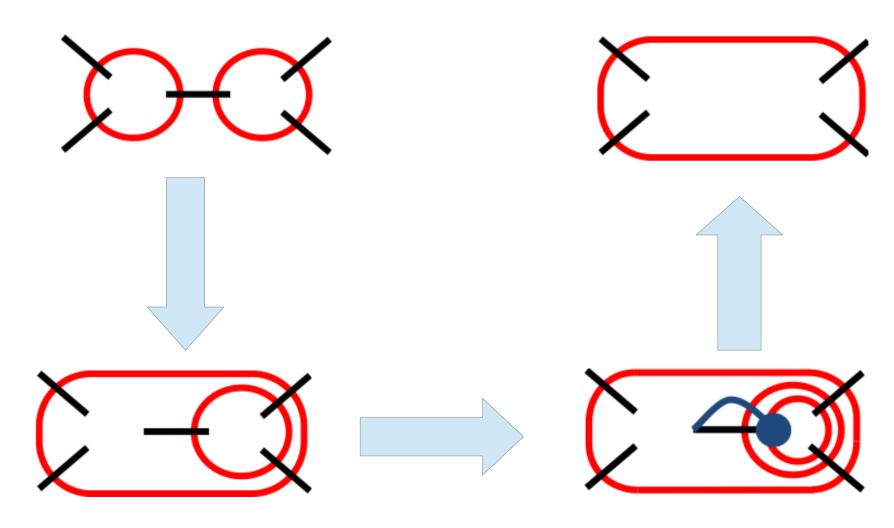
- arXiv:1409.2150

TENSOR NETWORK SUMMER SCHOOL Theoretical and computational aspects of matrix product states (MPS), projected entangled pair states (PEPS) and the multiscale entanglement renormalization ansatz (MERA) JUNE 1-5, 2015 GHENT, BELGIUM

- Tensor Network
 Summer School:
- June 1-5, 2015
 Ghent, Belgium
- Aspects of tensor networks:
 MPS, PEPS, MERA
- Check: www.tnss.ugent.be for more info.

Technical properties - 1

Concatenation:



Technical properties - 2

Intersection

